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The influence of random axially homogeneous surface roughness on spectral properties of dielectric reso-
nators of circular disk form is studied both theoretically and experimentally. To solve the equations governing
the dynamics of electromagnetic fields, the method of eigenmode separation is applied previously developed
with reference to inhomogeneous systems subject to arbitrary external static potential. We prove theoretically
that it is the gradient mechanism of wave-surface scattering that is highly responsible for nondissipative loss in
the resonator. The influence of side-boundary inhomogeneities on the resonator spectrum is shown to be
described in terms of effective renormalization of mode wave numbers jointly with azimuth indices in the
characteristic equation. To study experimentally the effect of inhomogeneities on the resonator spectrum, the
method of modeling in the millimeter wave range is applied. As a model object, we use a dielectric disk
resonator �DDR� fitted with external inhomogeneities randomly arranged at its side boundary. Experimental
results show good agreement with theoretical predictions as regards the predominance of the gradient scatter-
ing mechanism. It is shown theoretically and confirmed in the experiment that TM oscillations in the DDR are
less affected by surface inhomogeneities than TE oscillations with the same azimuth indices. The DDR model
chosen for our study as well as characteristic equations obtained thereupon enable one to calculate both the
eigenfrequencies and the Q factors of resonance spectral lines to fairly good accuracy. The results of calcula-
tions agree well with obtained experimental data.
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I. INTRODUCTION

Nowadays microresonators �disk-, ring-, and spherical-
shaped� evoke considerable interest because new possibili-
ties have recently opened up to develop these types of reso-
nators in the optical frequency range and to utilize them as
oscillation systems for optical lasers �1�. When used in la-
sers, such oscillation systems offer a number of serious ad-
vantages, among which are low-threshold currents, a high
quality of the radiation spectrum, etc. Microresonators manu-
factured as a dielectric disk whose diameter is large as com-
pared to the wavelength of the radiation are merely the open
quasi-optical dielectric disk resonators that have long been
known in resonator technology for their potential to effec-
tively sustain the electromagnetic �EM� field inside the reso-
nator volume. The retention of the field is provided due to
the total internal reflection �TIR� from the resonator side
boundaries of waves making up resonance oscillations. As a
result, EM oscillations of whispering gallery �WG� type
arise. As far as their excitation is not accompanied by the
additional dissipative loss, superhigh quality factors are
achieved in the dielectric disk resonators �DDRs�. Specifi-
cally, in laser systems, in spite of DDR’s microscopic dimen-
sions �the disk diameter is normally about a few �m large�,
the quality factors can reach the order of 108 and even more
�2�.

The high-quality factors of the DDRs, which are often
prepared from doped silicon, are generally provided not only
due to extremely small loss attainable in this material but

also governed by resonator geometry and the perfection of
the crystal it is made of. With a certain number of inhomo-
geneities �local and/or nonlocal, random and/or regular� in
the resonator material, the ray picture of EM fields in the
resonator changes dramatically as against its perfectly homo-
geneous counterpart. The inhomogeneities give rise to local
violation of TIR conditions and in this way result in addi-
tional energy loss, which is evident in the quality factor drop.
From the above there arises the problem of studying the
effect produced by random inhomogeneities in the DDRs on
their spectral characteristics.

In the theoretic analysis of the radiation loss of the DDR,
two types of inhomogeneities are normally distinguished. To
the first type, the inhomogeneities of volume nature belong,
which are related to regular or random spatial variations of
the permittivity in the bulk of the material the DDR is made
of. The other class of inhomogeneities includes the so called
“surface” imperfections normally related to the deviation of
the DDR shape from the ideal cylindrical one. The influence
of bulk random inhomogeneities on the resonance spectrum
was previously studied by the present authors in the particu-
lar case of cavity resonators filled with randomly distributed
dielectric particles �3�. It was found that the physical mecha-
nism through which inhomogeneities affect the resonator
spectrum is basically the intermode scattering. In the case of
a quasi-optical cavity resonator, the peculiar feature of this
type of scattering is the selective impact of inhomogeneities
on different resonance lines. The most affected lines appear
to be those that are the least separated on the frequency axis,
whereas solitary lines are subjected to much less influence.
Owing to such a selective effect of random inhomogeneities,
the originally dense spectrum of the quasi-optical cavity
resonator is considerably rarefied.
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In Refs. �4–7�, investigations were undertaken into the
impact of surface inhomogeneities on spectral properties of
open dielectric resonators of cylindrical and spherical shape.
The influence of boundary roughness upon the resonance
lines was described by means of the simplified quasigeomet-
ric approach in which EM oscillations scattering due to edge
inhomogeneities are taken into account by incorporating into
the wave equation the fictitious polarization currents �PC�
randomly distributed in space �8�. In particular, within the
framework of the model adopted in Ref. �4�, the electromag-
netic fields close to the resonator side surface were consid-
ered as being excited by randomly distributed near-surface
current sources whose physical parameters were phenomeno-
logically expressed through statistical characteristics of
boundary asperities. It was precisely the radiation produced
by these sources that led to the radiation loss of the resonator
and, consequently, to the quality factor reduction.

Such an essentially phenomenological approach to the de-
scription of the effect produced by the roughness of open
resonator boundaries on its spectral properties cannot be
reckoned as satisfactory. The volume current method sug-
gested in Ref. �8�, which formed the basis for the PC con-
cept, is, to a large extent, rough and approximate. In this
method, the radiation loss is most frequently calculated using
the Green function of the Helmholtz equation. The particular
form of this function is normally chosen proceeding from the
prospective solution of the wave equation in the far wave
zone. Meanwhile, the very notion of the far zone is poorly
defined for multiple sources located around the periphery of
the quasi-optical DDR we deal with in this particular work.
Specifically, when deriving characteristic equations for open
DDR eigenfrequencies, one needs to join EM field compo-
nents exactly at the boundaries of the system under consid-
eration. At this point, a significant uncertainty can arise be-
cause the actual external fields subject to local joining with
the internal ones in the presence of surface roughness can
deviate considerably from the fields approximated into the
boundary vicinity from large distances, i.e., from the far
wave zone.

To correctly determine the EM fields near the random-
inhomogeneous resonator surface, the theories specially
adapted for the description of classic and/or quantum wave
scattering by rough interfaces should be applied �see, e.g.,
Refs. �9–11��. These theories are generally applicable to the
cases in which wave scattering by random rough surfaces is
in a sense weak. Typically, this implies fluctuations of system
boundaries are relatively small in height and sufficiently
smooth, so that the applicability of the Rayleigh hypothesis
�12,13� was not violated. However, for confined systems like
the DDR considered in this work, the issues pertinent to
wave scattering by surface inhomogeneities appear to be
much more complicated. First, in practice the inhomogene-
ities are not always small enough, as well as sufficiently
smooth, therefore the conditions for scattering weakness are
easily violated. Moreover, as the resonance ray trajectories in
high-Q resonators are periodic, the effect of oscillation scat-
tering caused by the boundary roughness is “path”-
accumulated. Scattering can become strong even though the
asperities are small in height and smooth. This makes the
applicability of the above-mentioned theories of rough-

surface scattering in the case of high-quality resonators
highly questionable.

In Refs. �14,15�, the novel transport theory was developed
for waveguide-shaped systems with random rough bound-
aries. In the framework of this theory, it was revealed that the
wave scattering resulting from fluctuations of intermedia sur-
faces can be efficiently described in terms of two physical
mechanisms, namely the amplitude and the gradient ones.
For the first mechanism it is just the mean-square height of
the asperities that serves as a main guiding parameter,
whereas for the second one the mean slope of the asperities
or, in other words, their sharpness, plays the decisive role.
Both of these mechanisms contribute additively to the scat-
tering amplitude, but partial probabilities pertaining to them
may differ essentially. It was shown in �14,15� that, in most
cases, the role of the gradient scattering appears to be preva-
lent. Yet there have been no experimental confirmations of
this fact in the literature so far.

Apart from peculiar problems associated with the surface
nature of scattering in edge-disordered resonators, some
more questions arise that need to be resolved when studying
the spectra of DDRs subject to surface inhomogeneities.
Among these questions, particularly, are those related to the
vector nature of fields that are excited in these essentially
nonintegrable systems. It is known that even for ideal cylin-
drical DDRs, the electrical- and magnetic-type oscillations
cannot be separated in the strict sense. They always remain
to a certain extent intermixed �16�. This fact renders theoretic
analysis of such systems spectra rather sophisticated. Spec-
tral properties of DDRs without random inhomogeneities
were examined in a number of theoretical papers �see, e.g.,
Refs. �17–19��. Yet, in deriving characteristic equations some
inexact a priori assumptions where used, which still require
both theoretical grounding and experimental corroboration.

In our present study, one of the goals is to investigate
theoretically the physical mechanisms responsible for widen-
ing resonance lines of dielectric microresonators with ran-
dom surface inhomogeneities. In view of such systems being
non-integrable, it is necessary to elaborate an appropriate
theoretical model allowing for sufficiently accurate determi-
nation of both the frequency spectrum and the quality factors
of resonance lines. Yet another goal of this study is to cor-
roborate experimentally which of the physical mechanisms
does play a dominant role in the scattering of EM oscilla-
tions excited in microresonators with random rough side
boundaries.

From a theoretical viewpoint, the spectrum analysis in our
study is carried out in terms of scalar potentials, specifically
electrical and magnetic Hertz functions �16�. We formulate
the conditions wherein these potentials make independent
contributions to EM fields in the resonator, which is equiva-
lent to decoupling the oscillations of TE and TM polariza-
tion. The Helmholtz equation for Hertz potentials in an
irregular-shaped open resonator is equivalent to the
Schrödinger equation for electrons moving in the piecewise
continuous space subject to random potential. Owing to this,
one can extend the results obtained in the present study to
quantum systems as well, in particular to open quantum dots
having random rough boundaries.

To solve wave equations in the rough-bounded resonator,
the eigenmode separation method is used, previously devel-
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oped with reference to waveguidelike systems subject to ar-
bitrary static potential �20–22��. Using this method, the origi-
nally posed statistical problem of determining the fields in
three-dimensional DDR with a complex, randomly rough,
side boundary is rigorously reduced to the set of one-
dimensional dynamic equations that contain some effective
random potentials. We show that under the conditions where
the gradient scattering mechanism is dominant, the boundary
roughness effect on the resonator spectrum can be described
through certain renormalization of mode wave numbers and
azimuth indices of the Bessel functions in the characteristic
equation. The values of renormalized wave numbers and
mode indices decrease as the asperities get sharpened, which
is consistent with a decrease in the resonator Q factor. We are
thus led to the conclusion that the observed reduction of
resonant line quality factors results not from the extra dissi-
pative loss but rather from EM field intermode Rayleigh
scattering induced by random surface inhomogeneities. The
imperfection of the resonator shape results in the local vio-
lation of the TIR conditions. This leads to additional radia-
tion loss of EM energy and, hence, to a decrease in the level
of localization of EM fields inside the resonator.

Since characteristic dimensions of surface inhomogene-
ities in actual microresonators are always quite small �of the
order of nanometers�, to verify our theoretical findings ex-
perimentally we have decided upon the method of simulation
with macroscopic devices. As a model system, we have em-
ployed a millimeter-wave quasi-optical resonator made of a
circular teflon disk. WG oscillations of TE and TM types
were excited in the disk using a special waveguide antenna.
The inhomogeneities of the resonator side boundary were
made in the form of teflon bracket bars randomly attached to
the outside cylindrical surface. Our experimental results have
demonstrated excellent qualitative agreement with the devel-
oped theory as regards spectral line widening caused by the
resonator side boundary roughness. Furthermore, the rela-
tively simple model of the DDR field distribution, which was
adopted in our study, enabled us to calculate both the Q
factors and the frequencies of the resonance lines with quite
satisfactory accuracy. The calculations appeared to be in fair
conformity with our experimental data.

II. THEORETICAL MODEL AND DERIVATION
OF BASIC EQUATIONS

Consider an open disk resonator as a finite-height cylinder
made of the dielectric material with permittivity �0. Plain-
parallel end boundaries of the cylinder traverse the central
axis �z� at points z�= �H /2 �see Fig. 1�, the side boundary
�S� is formed by the generatrix passing parallel to the z axis
along closed contour C whose distance from the central axis
is given by

r��� = R + ����, � � �− �,�� , �1�

and R is the radius of the averaged �i.e., ideally circular�
contour C0 containing no random bends. The function ����
will be regarded as the Gaussian random process with a zero
mean value, ������=0, and binary correlation function

����������� = �2W�� − ��� . �2�

Here, � is the mean-square height of boundary asperities,
and W��� is the dimensionless function that has a unit maxi-
mal value at zero argument and falls to parametrically small
values at angle distance �c	1 �the correlation angle�. The
angle brackets in Eq. �2� denote statistical averaging over the
ensemble of realizations of random function ����. In what
follows, for estimation purposes, along with angle parameter
�c we will use another correlation parameter, viz., arc corre-
lation length sc=�cR. Both the random function ���� and the
regular W��� will be thought of as periodic with period 2�.

It is well known that in general the EM field of an open
dielectric resonator can be given as a superposition of oscil-
lations of electric and magnetic types �TM and TE polarized,
respectively� �16�. The vector fields of both of these types
can be expressed in terms of scalar potentials, U�r� and V�r�
�the so-called electric and magnetic Debye potentials�, which
meet the same Helmholtz equation but are subject to differ-
ent joining conditions at the resonator boundaries. In arbi-
trarily shaped resonators, TM and TE oscillations are essen-
tially intermixed, being strictly decoupled only in the case of
sufficiently symmetric systems such as, e.g., an infinite di-
electric cylinder �16� or a dielectric sphere �6�. Below it will
be shown that TM and TE oscillations can also be decoupled
�with high accuracy, though approximately� in the case of the
cylindrical DDR of arbitrary thickness. This fact opens an
opportunity to extend the conclusions of the present work to
electronic microresonance systems, e.g., partially open quan-
tum dots.

In studying oscillations in the DDR with randomly rough
side boundaries, we first reduce the problem of wave scatter-
ing at the boundary to the problem of scattering in the bulk
of the resonator of ideal circular form. The Helmholtz equa-
tion for scalar wave field 
�r�, whose role is played by one
of the above-mentioned potentials, after rewriting it in cylin-
drical coordinates and using the conformal coordinate trans-
formation,

r̃ =
r

1 + ����/R
,

�̃ = � ,

FIG. 1. �Color online� The sketch of the dielectric cylindrical
resonator with a randomly rough side wall. Vectors n and n0 point
out the local normal directions to the rough �S� and to the smoothed
resonator side surface, respectively.
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z̃ = z , �3�

is reduced to the form

�1

r

�

�r
r

�

�r
+

1

r2

�2

��2 +
�2

�z2 + K2�r,z� − V̂�h� − V̂�s��
�r,�,z� = 0

�4�

�the tilde signs over coordinate variables from here on are
omitted�. Here, K2�r ,z�=k2��r ,z�,

��r,z� = 	�0 + i/�0, �r,z� � � ,

1, �r,z� � � .

 �5�

1 /�0 is the phenomenological frequency parameter, which
takes into account dissipative and other uncontrollable losses
in the system, except for the radiation loss, and � is the bulk

region occupied by the dielectric. Effective potentials V̂�h�

and V̂�s� in Eq. �4� are the operators whose coordinate repre-
sentation reads

V̂�h� = − �K2�r,z� +
�2

�z2��
2��� − 1� , �6a�

V̂�s� = � �����
R
���

�

��
+

�

��

�����
R
����1

r

�

�r
− � �����

R
����21

r

�

�r
r

�

�r
,

�6b�


��� = 1 + ����/R .

Indices “h” and “s” specifying potentials �6a� and �6b� indi-
cate that the corresponding potential is mainly governed ei-
ther by fluctuations in the asperity height �i.e., by height
function ����� or by fluctuations in the asperity slope �i.e., by
slope function ������. Such a subdivision of the potentials,
with regard to the asymptotic suppression of correlations be-
tween functions ���� and ����� over angle intervals that are
large as compared to the correlation angle, urges one to con-
sider potentials �6a� and �6b� as corresponding to different
physical wave-surface scattering mechanisms �14,15�. We
will refer to these mechanisms below as the amplitude �or
the height, h� and the gradient �or the slope, s� scattering
mechanisms, respectively.

Subsequently, we will examine the boundary asperities,
which are sufficiently small in height so as to meet the in-
equality

� 	 R . �7�

In contrast to the widespread belief �see, e.g., Ref. �9��, this
does not necessarily imply that the surface-roughness-
induced scattering should be regarded as weak. We note, for
example, that the local value of the potential �6b� is esti-
mated by the parameter � /sc, which may take an arbitrary
absolute value provided the condition �7� is met. The true
conditions for the scattering to be classified as weak will be
provided below, based on the operator technique applied to
perform the principal calculations.

III. SEPARATION OF AZIMUTH MODES IN RANDOMLY
ROUGH DISK RESONATOR

The potentials V̂�h� and V̂�s� in Eq. �4�, which account for
inhomogeneity of the resonator side boundary, are defined
not quite conveniently from the viewpoint of subsequent use
of perturbation theories. The inconvenience relates to the
nonzero average value of the potential �6b�. By separating
this average, we can rewrite Eq. �4� as

��1 + �2�
1

r

�

�r
r

�

�r
+

1

r2

�2

��2 +
�2

�z2 + K2�r,z� − V̂�h� − V̂�s1�

− V̂�s2����r,�,z� = 0, �8�

where two different slope potentials are introduced instead of
potential Eq. �6b�, which have zero mean values, viz.,

V̂�s1� =
1

R
������

�

��
+

�

��
������1

r

�

�r
, �9a�

V̂�s2� = − ���2���/R2 − �2�
1

r

�

�r
r

�

�r
. �9b�

The parameter � in Eqs. �8� and �9b�, which is defined as

�2 =
1

R2 ��������2� �
�2

sc
2 , �10�

serves as a measure for the mean-square slope of boundary
asperities.

Considering that irregularities of the resonator side sur-
face are aligned paraxially, they cannot result in additional
scattering along axis z except for the partial reflection pro-
duced by the initial step change in this direction of the per-
mittivity of the medium. This makes it possible to remove
from Eq. �8� the dependence on the coordinate z with the
model method similar to the one we use when analyzing the
spectrum of homogeneity-free DDR �see Appendix A�. Spe-
cifically, we assume the dependence of the mode wave func-
tion on the coordinate z to have the same form used to find s-
and a-solutions for the ideal-shaped resonator �for the par-
ticular Ez-symmetric solution this dependence is given in
Eqs. �A2� and �A3��. Afterwards, Eq. �8�, being divided by
the factor of 1+�2, is reduced to the following form:

�1

r

�

�r
r

�

�r
+

1

�1 + �2�r2

�2

��2

+ K̃�
2 �r�z�� − Ṽ�h��z�� − Ṽ̂�s1� − Ṽ̂�s2��
�r,��z�� = 0,

�11�

where

K̃�
2 �r�z�� =

1

1 + �2

�	����R − r� + ��r − R��k2 − kz
2, �z� � H/2,

k2 + �z
2, �z� � H/2,



�12a�
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Ṽ�h��z�� = − K̃�
2 �r�z���
2��� − 1� . �12b�

The tilde signs over the potentials in Eq. �11� denote their
renormalization by the factor of �1+�2�−1. Equation �11�
actually describes two-dimensional fields because symbol z�

acts not as the current axial coordinate but stands for some
axial index specifying in which domain of the z axis—either
�z��H /2 or �z��H /2—the solution to Eq. �8� is sought.

In the azimuth mode representation, Eq. �11� assumes the
form

�1

r

�

�r
r

�

�r
+ K̃�

2 �r�z�� −
ñ2

r2 − Ṽn�r�z���
n�r�z��

− 

m�n

Ũnm�r�z��
m�r�z�� = 0. �13�

Here,

Ũnm�r�z�� = � d���,n�Ṽ�r,��z����,m� �14�

is the matrix element of the entire potential Ṽ�r ,� �z��

= Ṽ�h��z��+ Ṽ̂�s1�+ Ṽ̂�s2�, which is taken between eigen-
functions of the azimuth part of the Laplace operator �see

Appendix A�, Ṽn�r �z��� Ũnn�r �z��, the index n changes to

ñ=n /�1+�2. Later we will refer to matrix elements Ṽn and

Ũnm as the intra- and intermode potentials, respectively.
In the general case, it is rather difficult to immediately

solve the infinite set of coupled equations �13�. However, the
solution can be obtained in terms of the operator technique
previously developed by the present authors with reference
to waveguide-type random systems of arbitrary dimensional-
ity �20,21� and advantageously applied afterwards to the
analysis of bulk-disordered cavity resonators �3�. The above
technique, as applied to the problem touched upon in the
present paper, is adapted in Appendix B. The advantage of
the technique is that it can be used to derive precise closed
equations for wave functions of each of the azimuth modes,
namely

�1

r

�

�r
r

�

�r
+ K̃�

2 �r�z�� −
ñ2

r2 − Ṽn�r�z�� − T̂n�
n�r�z�� = 0.

�15�

Here, along with local intramode potential Ṽn, the operator

potential T̂n arises, which rigorously allows for the intermode
scattering. The structure of this potential, though well-
recognized, is quite complicated to be operated with at an
arbitrary scattering intensity. Yet the estimations we provide
in the next section substantially simplify the T potential in
Eq. �15� in different limiting cases, and in this way they
allow one to obtain the oscillation spectrum of a randomly
rough DDR in almost all physically sensible situations.

IV. SPECTRUM OF THE DDR WITH WEAKLY ROUGH
SIDE BOUNDARY

Hereinafter we will refer to the system as a weakly rough
one if the rms height of its boundary asperities meets in-

equality �7�. As the potentials in Eq. �15� are of the operator
nature, we will estimate their strength using the standard
definition of the operator norm �23,24�. For our purposes, the
formula

��Â�2� = sup
0���X

��Â�,Â���
��,��

�16�

is the most appropriate, in which the parentheses symbolize
the scalar product on the functional space X consisting of the
class of solutions to Eq. �15� with no random potentials.

To estimate the potentials in Eq. �11�, we first calculate
their azimuth matrix elements. For relatively small-height

asperities, the “height” potential Ṽ�h� equals approximately

Ṽ�h��z���−2K̃�
2 �r �z������ /R. Mode matrix elements of this

potential are

Ũnm
�h��r�z�� = −� 2

�
K̃�

2 �r�z��
�̃�n − m�

R
. �17�

�̃�n� is the Fourier transform of the function ����. Matrix

elements of the “slope” potentials Ṽ̂�s1� and Ṽ̂�s2� are equal,
respectively, to

Ũnm
�s1��r� = −

1
�2��1 + �2�R

�n2 − m2��̃�n − m�
1

r

�

�r
,

�18a�

Ũnm
�s2��r� =

1

2��1 + �2�R2 

l=−�

�

�n − l��l − m���̃�n − l��̃�l − m�

− ��̃�n − l��̃�l − m���
1

r

�

�r
r

�

�r
. �18b�

A. The efficiency of intramode scattering

We will ignore the role of the potential �17� for the intra-
mode scattering proceeding from the following consider-
ations. It is evident that under condition �7�, the uniform
azimuth mode of this potential can result, at most, in rela-
tively small ��� /R� renormalization of the unperturbed “in-

plane energy” K̃�
2 �r �z�. Yet, in the case we consider below

even this does not occur. We will regard the asperities as not
only being small in height but also as small-scaled ones in
the sense that the inequality holds,

sc 	 R ⇔ �c 	 1. �19�

In this limit, the uniform mode of the random process ����
with parametric accuracy ��̃�0����c� can be set equal to
zero, since the process is nearly ergodic within the interval of
the angle variable change.

The gradient potential �18a� is not involved in the intra-
mode scattering by its definition, so that only the potential
�18b� should be taken into account, where one must let m
=n. We use as trial functions in Eq. �16� the solutions of Eq.
�15� with random potentials equal to zero, i.e., Bessel func-

tion Jñ�K̃��r �z��r� in the interval 0�r�R and Hankel func-
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tion Hñ
�1��K̃��r �z��r� in the domain R�r��. Such a choice

is justified provided the intramode scattering has a slight
impact on the mode energies. Then we arrive at the following

estimate for the potential Ṽn norm:

��Ṽn�2� �
K̃�

4

�1 + �2�2R4�� 

l=−�

�

l2���̃�l��2 − ���̃�l��2���2� .

�20�

After averaging Eq. �20� using correlation equality

��̃�k��̃*�l�� = �2��2W̃�k��kl, �21�

which immediately stems from Eq. �2� �W̃ is the Fourier
transform of correlation function W����, we obtain

��Ṽn�2� �
K̃�

4

�1 + �2�2��

R
�4



l=−�

�

l4W̃2�l� � K̃�
4 �

R

��/sc�3

�1 + �2/sc
2�2 .

�22�

It can be readily seen that the factor standing at K̃�
4 on the

right-hand side of Eq. �22� is, in view of Eq. �7�, small as
compared to unity. This substantiates the above assumption
about the intramode scattering weakness.

B. Comparative estimations of intermode potentials

The intermode scattering rate in our resonator is up to the

norm of the operator R̂ entering the T matrix �B10�.

1. The “amplitude” intermode scattering

When estimating the norm of the “height” item R̂�h� in the

operator R̂, one is faced with a need to evaluate the expres-
sion

��R̂�h��2� �
1

���2

k
�

0

�

rdr 

m1,m2�k

�
0

�

r1dr1�
0

�

r2dr2

�Gk
�V��r,r1�Gk

�V�*�r,r2��Ũkm1

�h� �r1�Ũ
km2

�h�*�r2��

��m1
�r1��

m2

* �r2� �23�

�in order not to overload subsequent formulas, we omit axial
index z�, as this cannot lead to misunderstanding; function
Gk

�V��r ,r1� is introduced in Appendix B�. The simultaneous
presence in Eq. �23� of both the integrals over radial coordi-
nate r and the sums over mode indices stems from the defi-

nition of the functional space where the operator R̂ is effec-
tive.

In view of Eqs. �17� and �21�, the correlator in the inte-
grand of Eq. �23� is calculated to

�Ũkm1

�h� �r1�Ũ
km2

�h�*�r2�� = 2� 2

�
��

R
�2

K̃�
2 �r1�K̃

�

2*�r2�

�W̃�k − m1��m1m2
. �24�

By substituting this into Eq. �23� and assuming the asperity

correlation function to have the Gaussian form, viz. W���
=exp�−�2 /2�c

2�, we arrive at the following estimate for the
height term in the intermode scattering operator:

��R̂�h��2� � �K̃���2. �25�

The Rayleigh parameter k�, to whose square the right-hand
side of Eq. �25� is proportional, may take small or large
values, depending upon the relationship between mean-
square height of the asperities and the wavelength of the
excited oscillations. According to the value of this parameter,
we will distinguish between weak �k�	1� and strong �k�
�1� intermode scattering caused by the “height” potential.

2. The “gradient” intermode scattering

This type of scattering between different azimuth modes
is related to the availability in Eq. �13� of the potentials �18�.
Their correlators needed to estimate the operator norms of

items R̂�s1� and R̂�s2� in the operator R̂ are equal, respec-
tively, to

�Ũkm1

�s1��r1�Ũ
km2

�s1�*�r2�� =
1

�2�

�2

�1 + �2�2R2 �k2 − m1
2�2

�W̃�k − m1��m1m2

1

r1

�

�r1
·

1

r2

�

�r2

�26a�

�Ũkm1

�s2��r1�Ũ
km2

�s2�*�r2�� =
1

�2��2�1 + �2�2R4� 1

r1

�

�r1
r1

�

�r1
�

�� 1

r2

�

�r2
r2

�

�r2
� 


l1,l2=−�

�

�k − l1��l1 − m1�

��k − l2��l2 − m2���̃�k − l1�

��̃�l1 − m1��̃*�k − l2��̃*�l2 − m2�� .

�26b�

Assuming the function ���� to be the Gaussian random pro-
cess, the equality �26b� can be partially simplified as the
double sum over l1 and l2 is reduced to the single one,



l1,l2=−�

�

¯ = 4��4�m1m2 

l=−�

�

�k − l�2�l − m1�2

�W̃�k − l�W̃�l − m1� . �27�

Then the alternate substitution of correlation functions �26�
into Eq. �23� in place of the height potential correlator results

in the following estimation formulas for operators R̂�s1� and

R̂�s2�:

��R̂�s1��2� �
�2

�1 + �2�2

1

�c
2 , �28a�

��R̂�s2��2� � � �2

1 + �2�2

�K̃�R�2. �28b�
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The collation of norms �25� and �28� reveals that the
height and the gradient scattering mechanisms, given that
their effect is evaluated as a function of roughness statistical
parameters and radial components of the mode wave vectors,
can essentially compete against one another. However, the
general statement boils down to the fact that it is the gradient
scattering that is prevalent in most of the parameter region.
Specifically, the average square norms �28� dominate over
the parameter on the right-hand side of Eq. �25� if the in-
equalities are fulfilled,

n 	 � R

sc
�2

�29a�

and

�

sc
� ��

R
�1/2

. �29b�

These inequalities are formally independent of one another.
If only one of them fails to hold while the other is valid, the
gradient scattering remains prevailing against the amplitude
one. When exactly both of the conditions �29a� and �29b�
violate simultaneously, which implies the average tangent of
the asperity slope �tan ��� /sc� has extremely small value
and the azimuth index of oscillations is concurrently very
large, the amplitude scattering appears to be dominating.

C. Whispering gallery modes of the rough-side DDR

Based on the above estimations, Eq. �15�, which governs
the azimuth mode spectrum of the resonance system under
study, can be substantially simplified if one considers the
limiting cases of weak and strong scattering. As is seen from
Eq. �22�, for small rms height of the asperities �in the sense

of inequality �7�� the intramode scattering due to potential Ṽn
is weak, thereby making it possible to disregard it in the
main approximation.

As far as the intermode scattering is concerned, it is not
straightforward to estimate it in the same way as the intra-
mode one. From Eqs. �25� and �28� it follows that intermode
scattering should be classified either as weak or strong one

depending upon whether the operator R̂ norm is small or
large as compared with unity. If the intermode scattering
resulting from both the amplitude and the gradient potentials
is thought of as weak, which occurs when two inequalities
hold simultaneously,

k� 	 1, �30a�

�

sc
	

sc

R
, �30b�

the potential T̂n in Eq. �15� can be ignored with parametric
accuracy. In this instance, the resonator spectrum can be ob-
tained from the equation that differs from the initial unper-
turbed one simply by renormalizing both the mode index

�n→ ñ� and the radial wave number �K�→ K̃��. In the pa-
rameter region where both of the inequalities �30� are satis-
fied, this renormalization is extremely small ��	�c� and
can be safely disregarded.

Conditions �30�, which indicate the intermode scattering
weakness, can be easily violated. By virtue of peculiar tech-
nology, when manufacturing micro- and nanosized quantum
resonance systems, it is normally difficult to obey, e.g., in-
equality �30b�, which corresponds to extreme smoothness of
surface inhomogeneities. Moreover, inequality �30a� is ful-
filled within only limited, i.e., long-wavelength, part of the
resonator bandwidth.

If, at least, one of the conditions �30� is violated, the
intermode scattering fails to be classified as a weak one in

the sense that the norm of scattering operator R̂ in the po-
tential �B10� becomes large as against unity. Nevertheless, in
this case one may as well simplify the T potential by expand-

ing it in a series in the inverse scattering operator, R̂−1. The
expression between the projection operators in Eq. �B10� is
identically transformed as

Û�1 − R̂�−1R̂ = − Û + Û�1 − R̂�−1 = − Û − ÛR̂−1�1 − R̂−1�−1

= − Û − ÛÛ−1Ĝ�V�−1�1 − R̂−1�−1

� − Û − Ĝ�V�−1 − Ĝ�V�−1Û−1Ĝ�V�−1. �31�

Here we use the symbolic notation Ĝ�V�−1 for the full �i.e.,
including the whole set of azimuth modes� Green operator
with no intermode potentials. As a result of “coating” Eq.
�31� with the projection operators Pn, the first term in its
right-hand side is eliminated, and the operator acting on the
wave function in Eq. �15� assumes the following approxi-
mate form:

1

r

�

�r
r

�

�r
+ K̃�

2 �r�z�� −
ñ2

r2 − Ṽn�r�z�� − T̂n

= Ĝn
�V�−1 − T̂n � 2Ĝn

�V�−1 + PnĜ�V�−1R̂−1Pn

� 2�1

r

�

�r
r

�

�r
+ K̃�

2 �r�z�� −
ñ2

r2� . �32�

By comparing the expression on the right-hand side of Eq.
�32� with the one on its left-hand side, with potentials

Ṽn�r �z�� and T̂n set to zero, one can notice that the limiting

cases of weak and strong �in the sense of the operator R̂
norm� intermode scattering differ from one another solely by
doubling the wave operator in the latter case. Clearly, such
doubling implies that in strong surface scattering the ampli-
tude of the excited oscillations is twice as small as the one in
the weak scattering limit. However, it is evident that the
change in the common factor multiplying the wave operator
cannot reveal itself in dispersion relations.

We have thus demonstrated that the formal algebraic
structure of the wave operator remains basically unchanged
under conditions of weak and strong scattering. In both of
these cases, the wave operator differs slightly from its unper-
turbed form. The main difference between dispersion rela-
tions for resonators with perfect and rough side boundaries is
that in the latter case the initial transverse wave parameter
K��r �z� and the mode index n are renormalized by the gra-
dient factor of �1+�2�−1/2. This enables us to immediately
write down the dispersion equations for a DDR with random
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inhomogeneous side boundary based upon the results given
in Appendix A. Specifically, for a rough-bounded DDR the
oscillation spectrum is governed by the equation

� �

k̃�
�

Jñ��k̃�
� R�

Jñ�k̃�
� R�

−
1

k̃�

Hñ
�1���k̃�R�

Hñ
�1��k̃�R�

�� 1

k̃�
�

Jñ��k̃�
� R�

Jñ�k̃�
� R�

−
1

k̃�

Hñ
�1���k̃�R�

Hñ
�1��k̃�R�

� =
ñ2

R2 �� − 1�2 kz
2k̃2

�k̃�
� �4k̃�

4
, �33�

which has to be supplemented with additional relationships
between k and kz, the latter resulting from joining the fields
at the end interfaces. In Eq. �33�, the notations are introduced

�ñ , k̃ , k̃�
� , k̃��= �n ,k ,k�

� ,k�� /�1+�2; the wave numbers k�
�

and k� are defined in Eq. �A4�.
As the additional connection between wave parameters k

and kz in the case of a perfect cylindrical resonator, Eq. �A9�
is obtained for Ez-symmetric oscillations. For
Ez-antisymmetric oscillations, Eq. �A10� holds. One can eas-
ily check that in going from unperturbed wave equation �A1�
to Eq. �8� describing the DDR with a rough side wall, the
equations derived through joining EM field components at
the end boundaries of the dielectric disk remain unchanged.

Finally, proceeding from the above calculations, we are
led to conclude that with any roughness of the DDR side
wall, which is basically restricted by the smallness condition
�7�, to obtain the oscillation spectrum one can make use of
the relationship Eq. �33� mainly coincident in form with the
dispersion equation for an infinitely long dielectric cylinder.
As a supplementary condition to interconnect the lengthwise
and transverse wave-vector components, Eq. �A9� or Eq.
�A10� should be applied, depending upon Ez symmetry of the
desired solution. The fundamental difference of Eq. �33�
from its perfect-cylinder counterpart is the renormalization
of basic wave parameters, which is governed by geometric
properties of the asperities. A special emphasis should be
placed on the fact that it is exactly the gradient scattering
mechanism, not the amplitude one, that most crucially affects
the DDR spectrum. This particular fact makes itself evident
in that the renormalization of wave parameters in Eq. �33� is
dictated not by the height-type parameters, such as, e.g.,
Rayleigh parameter k� or the ratio � /R, but is mainly regu-
lated by the mean-square slope of the asperities against the
unperturbed resonator boundary, which is specified by pa-
rameter � /sc.

V. EXPERIMENTAL RESULTS AND DISCUSSION

The main goal of the experimental studies in this work
was to validate our theory as regards microresonator spectra
and the effect of random surface inhomogeneities on them.
The point is that the essential assumption adopted in the
theory is that it virtually does not consider electromagnetic
fields radiated from the resonator external edges into the cor-
ner regions labeled by numbers 4 and 4� in Fig. 7 �see Ap-
pendix A�. At the same time, without making quite complex
calculations, one cannot make a priori statements about
these fields being small enough to neglect them in calculat-
ing the resonator spectrum.

Yet another goal of the experiment was to examine our
theoretical findings concerning the physical mechanism that
adequately describes the influence of random surface inho-
mogeneities on microresonator spectral properties. Inequali-
ties �29a� and �29b� can hardly be broken simultaneously in
the most realistic range of asperity parameters pertinent to
real devices. Therefore, in our experimental setup we
adopted the parameter values allowing us to compare the
data of measurements with the predictions resulting from Eq.
�33�, where gradient scattering only is taken into account, the
amplitude scattering mechanism being omitted based on the
above indicated inequalities.

The studies of the microresonator spectrum were per-
formed through modeling these quite small systems in the
millimeter wave band. For this purpose, we used a quasioptic
dielectric disk resonator. Physically, oscillation properties of
this macroscopic system are identical with properties of sili-
con microresonators used as oscillation systems in real opti-
cal lasers. Our resonator was made of teflon, whose permit-
tivity is not significantly far from unity ��=2.08� and whose
dielectric loss in the millimeter range is fairly small �tan �
�2.3�10−4�. In the model DDR, whispering gallery oscil-
lations were excited with the EM field concentrated at the
periphery of the disk, in the narrow region close to its side
boundary. This enabled us to use the disk core to fix it in the
level position without introducing additional dissipative
losses to the experiment. The source of WG modes was po-
sitioned close to the resonator side boundary. Its role was
played by the waveguide antenna powered by the microwave
generator. The antenna was fabricated as a waveguide ta-
pered along the short wall, whose butt end was positioned
near the resonator side surface. The receiving antenna was
made identical to the source antenna and was placed at the
diametrically opposite point off the disk.

Thin dielectric bracket bars were used as the inhomoge-
neities of the resonator side boundary. They were attached to
the DDR side surface. The basic requirement imposed on the
inhomogeneities was for them not to cause noticeable addi-
tional dissipative losses. To this end, the bracket bars were
made of the same teflon as the resonator body. The inhomo-
geneities distribution on the resonator side surface was ran-
dom and varied for each different realization. In Fig. 2, the
general view of the resonator is shown along with the excit-
ing and the receiving antennas as well as with the attached
teflon bracket bars.

In order to excite TE or TM oscillations in the resonator,
two different configurations of antenna-versus-resonator
were used. For TE oscillations, the antenna magnetic field
was directed along the resonator axis, z. To achieve this, the
wide plate of the waveguide was aligned parallel to this axis.
In the case of TM oscillations, along the axis z the electric
field was directed. For this purpose, the wide side of the
antenna was oriented transversely.

By changing the distance between the exciting waveguide
butt end and the resonator side boundary, as well as the angle
between them, we were able to adjust the coupling between
the antenna and the resonator to optimize it. As the optimal
coupling, we accepted the one whereby the additional loss
caused by the antenna was much less than the eigenloss in
the resonator. At the same time, it was necessary to keep the
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level of the coupling sufficient for spectral lines to be trace-
able. The pattern of whispering gallery EM fields in the DDR
is known to be very sensitive to the frequency variation.
Therefore, the resonator-to-waveguide coupling is different
for each of the modes. Based upon this, we established the
optimal coupling for each of the spectral lines separately
while carrying out the measurements in a wide frequency
range.

Spectral measurements with the model resonator were
made in the on-pass regime using a millimeter waveband
standing-wave ratio meter. The part of the recorded spectrum
is shown in Fig. 3. Since the experiments were conducted
over a wide range of frequencies and for a large number of
realizations of surface inhomogeneities, all spectral measure-
ments were rendered automatic. The signal from the ratio
meter was sent to the computer and processed by means of
the especially designed program to find both the frequencies
and the quality factors of resonance lines. The accuracy of
the measurements was 0.01% and 5% for the resonance fre-
quencies and the quality factors, respectively.

To identify the spectral lines, it was necessary to deter-
mine the value of the azimuth index for each of the lines in
the absence of inhomogeneities. To this end, the miniature
rotating probe made of a thin metal plate was used, which we
inserted into the region at the resonator disk where the elec-
tric field antinode was positioned �see Fig. 4�. In so doing,
the source was tuned to the frequency of the particular spec-

tral line. When the probe rotated about the resonator axis, the
signal registered by the receiver varied in time at the rate the
probe passed across the regions with electric field loops. This
enabled us to determine the desired mode index through the
measurements of the signal modulation frequency. In Fig. 5,
the results of numerical calculations of the resonator spec-
trum are shown along with spectral measurements data. As
seen from Fig. 5�a�, the measured spectra of TE and TM
modes correlate well with the calculated spectra. The differ-
ence between spectral line frequencies found from Eq. �33�,
including intrinsic dissipation loss in the dielectric, and ex-
perimentally measured frequencies is no more than 1%. The
quality factors obtained in the experiment �as shown in Fig.
5�b�� are smaller than those calculated theoretically. We at-
tribute this to the fact that the measured Q factor includes not
only eigenloss in the resonator material but also is affected
by the loss resulting from coupling with the antenna. From
the diagrams in Fig. 5 one can observe the nearly equidistant
character of the spectrum �the frequency interval ��
�0.7 GHz�, which is typical for open resonators with WG-
type oscillations �16�, as well as the exponential dependence
on the mode index n of the calculated and the measured Q
factors.

Our calculations suggested, and it was experimentally
confirmed, that for TM oscillations the resonator quality fac-
tor is significantly larger than that for TE oscillations, both of
them being taken with the same azimuth index. This suggests
that in the case of TM oscillations, the DDR has the property
to more efficiently retain electromagnetic field in its volume
than the resonator with TE oscillations does. The difference
between TM and TE oscillation Q factors was already noted
by the authors of Ref. �7�. Their interpretation of the effect
that the internal electric fields of TM and TE oscillations
couple differently to radiation modes agrees well with the z
independence of side-surface roughness and also is con-
firmed by the analysis of our characteristic equations �33�,
�A9�, and �A10�. We have thus established that both the the-
oretical model of the resonator we have chosen for our cal-
culations and the dispersion relations obtained thereupon
have found impressive experimental confirmations.

According to the findings of our theory, the main physical
mechanism for EM field scattering by random inhomogene-
ities of the resonator side boundaries �as long as inequalities
�29a� and �29b� do not fail at the same time� is the gradient

FIG. 2. Schematic view of the experimental DDR with surface
inhomogeneities: 1, teflon disk; 2, superimposed teflon bracket-bars
�inhomogeneities�; 3,4, the exciting and receiving waveguide anten-
nas; d, the gap between the antenna and the DDR’s side surface,
which is used to tune the coupling of antenna with the resonator.
The diameter of the DDR is 102 mm, the thickness is 7.6 mm. The
inhomogeneities dimensions are the length, the width, and the
thickness 7.6, 3, and 2 mm, respectively.

FIG. 3. Representative part of the DDR spectrum. Ordinate axis
corresponds to the relative amplitude of spectral lines.

FIG. 4. Schematic diagram of the device for determining azi-
muth mode indices in the quasi-optical DDR: 1, electromotor with
rotational speed 2 r.p.m.; 2, electromotor revolving shaft; 3, metal-
lic leash; 4, metallic flag made of thin �0.1 mm� steel plate for
perturbing the whispering gallery electric field in the resonator; 5,
waveguide antenna for excitation of whispering gallery oscillations;
6, quasi-optical disk resonator; 7, receiving waveguide antenna.
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mechanism. The scattering arisen due to fluctuations in the
asperity slope can be allowed for by way of modification of
the cylindrical function indices along with the wave numbers
in the characteristic equation �33�. The modification reduces
to multiplying the parameters n, k, k�, and k�

� by a factor of
�= �1+�2�−1/2�1. In order to identify the main scattering
mechanism experimentally and thus to check the developed
theory, it was necessary to estimate the value of the param-
eter � starting from the parameters relevant to a particular
experiment. We were governed by the following consider-
ations. Setting the correlation length equal to an average dis-
tance between the centers of the attached dielectric bracket
bars, i.e., sc=2�R /N, where N is the total number of bracket
bars, with Gaussian-distributed inhomogeneities we obtain

� = �1 + ��N

R
�2�−1/2

. �34�

It can be easily seen that the parameter � tends to decrease
with an increasing number of bracket bars, which leads to a

decrease in the effective wave number k̃ and the effective
mode index ñ. Since the dependence of the quality factor on
the mode index is nearly exponential, Q�eñ, the availability
of surface inhomogeneities should result in a decrease in the
resonator quality factor, whose origin is not an additional
dissipative loss.

According to our theory, with a small number of inhomo-
geneities the effect of slope-controlled scattering must be
fairly slight �the parameter � decreases with lowering N�.
Therefore, the value of the quality factor must be weakly
dependent on N as well. Such was indeed the case in our
experiments, whose results are depicted in Fig. 6 �the part of
the N axis with N�30 corresponds to the fulfillment of at
least one of the conditions �29a� and �29b��. In the same
figure, the curves Q�N� are plotted for comparison, which are
calculated from the characteristic equation �33� including
modification factor � and the dissipation loss in the resonator
material. The loss was taken into consideration phenomeno-
logically by adding the imaginary part to permittivity �; see
Eq. �5�. With the statistical nature of our measurements �the
averaging is done over a large number of realizations of the
bracket-bar set�, the agreement between theoretical and ex-
perimental results appears to be quite satisfactory. This sug-
gests that, since both in our theory and in the numerical
calculations based upon it the slope scattering mechanism
alone is taken into account, the qualitative agreement be-
tween theory and experiment unambiguously corroborates
the dominant role of this particular type of wave-surface
scattering.

As is also seen from Fig. 6, the influence of surface inho-
mogeneities on the DDR spectrum differs significantly for
TE- and TM-type oscillations. The quality factors of TE os-
cillations are to a far larger extent subjected to the resonator
boundary roughness as against the factors of TM oscillations.
With a given number of inhomogeneities, the Q factor of TE
oscillations is noticeably smaller than that of TM oscilla-
tions. This fact, which is quite important for practical appli-
cations of microresonators in laser oscillation systems, was

FIG. 5. �Color online� The collation of theoretic and experimen-
tal data for the DDR with perfect cylindrical boundaries: the depen-
dence �a� of spectral line frequency and �b� of the logarithm of
quality factor on the azimuth index n. For TMn,1 mode: 1, calcula-
tion; 2, experiment; for TEn,1 mode: 3, calculation; 4, experiment.

FIG. 6. �Color online� The Q-factor curves vs the number of
inhomogeneities on the resonator side surface. TM44,1 oscillations:
1, theory; 2, experiment; TE44,1 oscillations: 3, theory; 4, experi-
ment. Calculations were carried out at �=3.5 mm and R=51 mm.
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given certain attention in Ref. �7�. Yet in the present work, it
has been comprehensively substantiated.

VI. CONCLUSION

To summarize, we have investigated spectral properties of
a dielectric disk resonator with randomly rough side bound-
ary both theoretically and experimentally. It is shown that the
azimuth modes of the resonator oscillations can be rigor-
ously separated at whatever level of surface inhomogeneities.
This allowed us to obtain the asymptotically exact dispersion
equations which are valid over a wide range of the roughness
parameters. The only requirement imposed on the inhomoge-
neities and effectively utilized in the calculations was that
their mean-square height be small as compared with the un-
perturbed �i.e., nonrough� disk resonator radius.

In deriving dispersion relations, we have shown that elec-
tromagnetic wave scattering resulting from the boundary
roughness can be described in terms of two fundamentally
different physical mechanisms, specifically, the amplitude
�the height� scattering mechanism and the gradient �the
slope� mechanism. For the first of them, the ratio of the mean
height of the asperities to the oscillation wavelength �the
Rayleigh parameter� acts as the main guiding parameter,
whereas for the gradient mechanism the mean slope of the
asperities relative to the unperturbed resonator boundary
plays the same role. Our estimations have revealed that it is
exactly the gradient scattering that is of primary importance
for the formation of a rough resonator spectrum. The effect
of this type of scattering can be described through the ap-
proximate dispersion equation that differs from the analo-
gous equation for the ideally circular DDR by the gradient
renormalization of the basic wave parameters, i.e., the mode
wave numbers and the azimuth index.

Our theory aimed at describing the influence of random
surface inhomogeneities on microresonator spectral proper-
ties analytically is actually of model nature. The point is that
it does not incorporate the electromagnetic fields radiated
from the resonator into external angle sectors. To neglect
these fields theoretically is quite a challenge. Therefore, to
verify the conclusions of our approximate �to the certain ex-
tent� theory, we have made experimental measurements on
the model millimeter wave band dielectric disk resonator.
Surface inhomogeneities were presented by teflon bracket-
bars of relatively small cross section, which were attached
randomly to the resonator side boundary. For the perfect-wall
resonator, i.e., the resonator with no inhomogeneities at-
tached, our measurement data have demonstrated excellent
agreement with the developed theory concerning both the
frequency spectrum and the quality factors of spectral lines.
Close qualitative agreement is also attained with regard to
the effect produced on the resonator spectrum by random
surface inhomogeneities placed at the side boundary. First,
we have confirmed the theoretical predictions about the lead-
ing role of the gradient scattering mechanism in describing
the effect of random rough boundaries. Second, we ascer-
tained that the system of model dispersion equations we have
obtained herein is quite effective in describing the open mi-
croresonator spectra.

Besides, our experiments have revealed that the effect
produced by the surface inhomogeneities of the DDR on the
TE and TM oscillation spectra is fundamentally different.
The TM oscillations quality factor exceeds significantly the
analogous factor for the TE oscillations, being yet less af-
fected by surface inhomogeneities. In our work, this particu-
lar fact, which is essential for the production of
microresonator-based lasers, has been theoretically and ex-
perimentally validated.
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APPENDIX A: MODEL SPECTRUM OF IDEAL
CYLINDRICAL DDR

Proceeding from the methodology considerations, we out-
line the technique for deriving dispersion equations for cy-
lindrical finite-size resonator with perfectly smooth bounding
surfaces.

Consider Eq. �4� without potentials V̂�h� and V̂�s�. Upon
going to Fourier representation over angle variable � using
the complete set of eigenfunctions �� ,n�
= �2��−1/2 exp�−in��, where n=0, �1, �2, . . ., the equation
for the nth angular component of the wave function becomes

�1

r

�

�r
r

�

�r
+

�2

�z2 + K2�r,z� −
n2

r2�
n�r,z� = 0. �A1�

The function 
n�r ,z� is sought to be finite as r→0, whereas
at r→� and �z�→� the radiation conditions are meant to be
fulfilled.

It is difficult to find the explicit solution of Eq. �A1� in the
entire domain of variables r and z. Yet basically there is no
need to make use of such a solution. It will suffice to obtain
dispersion relations that are not strictly valid but satisfied
with good accuracy. We will seek a desired solution in the
model form, as was done, e.g., in Refs. �17,18�, imposing the
pair of basic requirements. One of the requirements is to
fulfill fundamental boundary conditions at zero and infinite
distances from the resonator center, while the other is to
provide correct joining of the EM field components at the
dielectric disk interfaces.

By representing the solution of Eq. �A1� as a sum of
Ez-symmetric and Ez-antisymmetric summands �hereinafter
we will specify them by indices �s� and �a�, respectively�, we
will seek the Debye potentials in the form given below,

Un1
�s��r,z� = An

e�s�Jn�k�
� r�cos kzz , �A2a�

Un2
�s��r,z� = Bn

e�s�Hn
�1��k�r�cos kzz , �A2b�

Un3
�s��r,z� = Cn

e�s�Jn�k�
� r�exp�− �z�z�� , �A2c�

Vn1
�s��r,z� = An

m�s�Jn�k�
� r�sin kzz , �A3a�

Vn2
�s��r,z� = Bn

m�s�Hn
�1��k�r�sin kzz , �A3b�
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Vn3
�s��r,z� = Cn

m�s�Jn�k�
� r�exp�− �z�z��sgn z . �A3c�

In Eqs. �A2� and �A3�, the subscripts 1, 2, 3 correspond to
the regions �see Fig. 7� that are labeled with corresponding
numbers. The wave parameters k�, k�

� , and �z are given by

k�
2 = k2 − kz

2, �A4a�

�k�
� �2 = �k2 − kz

2, �A4b�

�z
2 = k2�� − 1� − kz

2. �A4c�

By representing EM field components in terms of the po-
tentials �A2� and �A3� and by joining the in- and the out-field
components at the resonator side boundary �i.e., between re-
gions 1 and 2�, we obtain the well-known equation that
couples together wave parameters k and kz �16�,

� �

k�
�

Jn��k�
� R�

Jn�k�
� R�

−
1

k�

Hn
�1���k�R�

Hn
�1��k�R�

�� 1

k�
�

Jn��k�
� R�

Jn�k�
� R�

−
1

k�

Hn
�1���k�R�

Hn
�1��k�R�

� =
n2

R2 �� − 1�2 kz
2k2

�k�
� �4k�

4 . �A5�

In order to obtain yet another coupling equation for the same
wave parameters, we join the tangential components of the
field at the end boundary z=H /2. This leads to the set of
equations

k�
� Jn��k�

� r��− kz sin
kzH

2
An

e�s� + �z exp�− �zH/2�Cn
e�s��

+
n

r
Jn�k�

� r�k�sin
kzH

2
An

m�s� − exp�− �zH/2�Cn
m�s�� = 0,

�A6a�

k�
� Jn��k�

� r�k�sin
kzH

2
An

m�s� − exp�− �zH/2�Cn
m�s�� +

n

r
Jn�k�

� r�

��− kz sin
kzH

2
An

e�s� + �z exp�− �zH/2�Cn
e�s�� = 0, �A6b�

k�
� Jn��k�

� r��kz cos
kzH

2
An

m�s� + �z exp�− �zH/2�Cn
m�s��

−
n

r
Jn�k�

� r�k�� cos
kzH

2
An

e�s� − exp�− �zH/2�Cn
e�s�� = 0,

�A6c�

k�
� Jn��k�

� r�k�� cos
kzH

2
An

e�s� − exp�− �zH/2�Cn
e�s��

−
n

r
Jn�k�

� r��kz cos
kzH

2
An

m�s� + �z exp�− �zH/2�Cn
m�s��

= 0, �A6d�

where the number of unknowns �to the latter we assign not
only constant factors included in Eqs. �A2� and �A3� but also
the functions Jn��k�

� r� and �n /r�Jn�k�
� r�� exceeds the number

of equations thus obtained. The situation can be improved if
one adds to the system �A6� a pair of equalities resulting
from joining the EM field normal components at the same
end boundary, specifically,

An
e�s� cos

kzH

2
=

1

�
Cn

e�s� exp�− �zH/2� , �A7a�

An
m�s� sin

kzH

2
= Cn

m�s� exp�− �zH/2� . �A7b�

Using Eqs. �A6� and �A7�, we arrive at a set of four coupled
equations that can be naturally combined in pairs, viz.,

k�
� Jn��k�

� r���z −
kz

�
tan

kzH

2
�Cn

e�s� = 0,

n

r
Jn�k�

� r���z −
kz

�
tan

kzH

2
�Cn

e�s� = 0; �A8a�

k�
� Jn��k�

� r���z + kz cot
kzH

2
�Cn

m�s� = 0,

n

r
Jn�k�

� r���z + kz cot
kzH

2
�Cn

m�s� = 0. �A8b�

Since the Bessel functions do not vanish simultaneously
with their derivatives, one can satisfy Eqs. �A8a� and �A8b�
in two ways. The first one is to equate the expression in the
parentheses of Eqs. �A8a� to zero, putting the constant
Cn

m�s�=0 in Eqs. �A8b�. Alternatively, the parentheses in Eq.
�A8b� can be set equal to zero concurrently with the coeffi-
cient Cn

e�s� in Eqs. �A8a�. As can be readily seen from Eqs.
�A2� and �A3�, the former solution corresponds to the TM-
type oscillations whereas the latter is consistent with TE po-
larization. Both of these cases can be combined into one
equation of the following form:

��z −
kz

�
tan

kzH

2

TM

���z + kz cot
kzH

2

TE

� = 0.

�A9�

FIG. 7. The areas on the half-plane �r ,z� between which the
joining of EM fields is performed. The shaded region is filled up
with the dielectric.
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The lower curly brackets in Eq. �A9� indicate the polariza-
tion that correlates with vanishing the expression in the cor-
responding parentheses. By carrying out the calculations
similar to those given above, for Ez-antisymmetric solution
of Eq. �A1� we arrive, instead of Eq. �A9�, at the equality

��z − kz tan
kzH

2

TE

���z +
kz

�
cot

kzH

2

TM

� = 0.

�A10�

Note that the relationships �A5�, �A9�, and �A10� were
previously obtained in Ref. �17�, although the latter two were
of a somewhat different form. In that paper, however, polar-
ization of the excited EM field was not discussed at all. At
first glance, from our derivation of Eqs. �A9� and �A10� it
may seem that TM- and TE-type oscillations in the DDR of
finite thickness can be perfectly separated, at least with no
regard for the boundary inhomogeneity. As a matter of fact,
this is not the case because one must take into account the
inaccuracy, i.e., the model character of wave solutions �A2�
and �A3� used when deriving dispersion relations. These so-
lutions, as well as the analogous ones for the antisymmetric
case, are well adapted for joining the in- and the out-field
components at the boundaries between regions 1-2 and 1-3 in
Fig. 7. The fields in region 4 are not taken into consideration,
which must inevitably result in some “overflow” of the spec-
trum obtained in such a way.

It is a difficult task to correctly evaluate the possibility to
neglect the fields in the fourth region in Fig. 7 without re-
sorting to rigorous calculations. Nevertheless, by now there
does not exist a rigorous theory for a finite thickness DDR,
even in the seemingly simple case in which the boundaries
are perfectly smooth. For this reason, in order to test the
results we obtained by the model calculations, we choose to
compare the spectrum resulting from Eqs. �33�, �A9�, and
�A10� with the one measured in the experiment.

APPENDIX B: MODE SEPARATION IN THE TWO-
DIMENSIONAL WAVE EQUATION WITH ARBITRARY

SCATTERING POTENTIAL

Consider the equation for the Green function of Eq. �13�
without rendering both the physical nature of mode poten-
tials and their absolute value concrete,

�1

r

�

�r
r

�

�r
+ K̃�

2 �r�z�� −
ñ2

r2 − Ṽn�r�z���Gnn��r,r��z��

− 

m�n

Ũnm�r�z��Gmn��r,r��z�� =
1

r
��r − r���nn�.

�B1�

Along with the exact Green function, which has a matrix
structure in variables n and r, we introduce for each of the
azimuth modes the trial mode propagator, which is assumed
to obey the closed equation

�1

r

�

�r
r

�

�r
+ K̃�

2 �r�z�� −
ñ2

r2 − Ṽn�r�z���Gn
�V��r,r��z��

=
1

r
��r − r�� �B2�

resulting from Eq. �B1� providing that the intermode scatter-

ing is disregarded. We will use the notation Ĝn
�V�−1 for the

operator in square brackets of Eq. �B2�. The initial equation
�B1� can then be recast as

Ĝn
�V�−1Gnn��r,r��z�� =

1

r
��r − r���nn�

+ 

m�n

Ũnm�r�z��Gmn��r,r��z�� ,

�B3�

or, in the equivalent integral form, as

Gnn��r,r��z�� = Gn
�V��r,r��z���nn� + 


m�n
�

0

�

r1dr1

�Gn
�V��r,r1�z��Ũnm�r1�z��Gmn��r1,r��z�� .

�B4�

By setting in Eq. �B4� index n�n� and then relabeling all
mode indices, we can write this equation as the equation for
solely intermode components of the Green matrix �Gmn�, the
intramode ones being thought of as known functions,

Gmn�r,r��z�� − 

k�m

k�n

�
0

�

r1dr1

�Gm
�V��r,r1�z��Ũmk�r1�z��Gkn�r1,r��z��

= �
0

�

r1dr1Gm
�V��r,r1�z��Ũmn�r1�z��Gnn�r1,r��z�� .

�B5�

At this stage we introduce three operators, Ĝ�V�, Û and R̂,
which are assumed to act in the reduced coordinate-mode

space M̄n consisting of the half-axis r�0 and the entire set
of mode indices except for the particular index n. The opera-
tors are specified by their matrix elements

�r,n�Ĝ�V��r�,m� = Gn
�V��r,r��z���nm, �B6a�

�r,n�Û�r�,m� = Ũnm�r�z��
1

r
��r − r�� , �B6b�

�r,n�R̂�r�,m� = Gn
�V��r,r��z�Ũnm�r��z�� . �B6c�

Equation �B5� can now be recast as the matrix equality

�r,m��1 − R̂�Ĝ�r�,n� = �r,m�R̂PnĜ�r�,n� , �B7�
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or, equivalently, in the general operator form as

Pm�1− R̂�ĜPn=PmR̂PnĜPn. Here, Pn is the projection opera-
tor whose action reduces to assigning the value n to the
nearest mode index of an arbitrary operator standing adjacent
to it, either to the left or right. Multiplying both sides of the

operator equality thus obtained by the operator �1− R̂�−1

whose regularity was substantiated in Ref. �20�, we arrive at
the integral relation between the nondiagonal and diagonal
mode matrix elements of the Green function, viz.,

Gmn�r,r��z�� = �r,m��1 − R̂�−1R̂PnĜ�r�,n�

= �K̂mnĜnn��r,r��z�� . �B8�

Setting in Eq. �B1� index n�=n and substituting the inter-
mode propagators in the form �B8�, we eventually obtain the
closed equation for intramode Green function Gnn�r ,r� �z��,

�1

r

�

�r
r

�

�r
+ K̃�

2 �r�z�� −
ñ2

r2 − Ṽn�r�z�� − T̂n�Gnn�r,r��z��

=
1

r
��r − r�� . �B9�

Here, T̂n is the operator that accounts for the intermode scat-
tering �it is just the T matrix well known in quantum scatter-
ing theory �25,26��, which has the form

T̂n = PnÛ�1 − R̂�−1R̂Pn. �B10�

The trial Green function Gn
�V��r ,r� �z�� entering operator po-

tential �B10� through matrix elements �B6c� obeys Eq. �B2�
and the same boundary conditions just like the desired mode
propagator Gnn�r ,r� �z��.

Equation �B9� along with Eq. �B8� determine the entire
Green function of wave equation �13� and serve as a basis for
deriving the system of uncoupled equations �15� for azimuth
components of the sought-for wave function.
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